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� Overview

Pattern recognition is one of the most fundamental and important types of information pro�
cessing� The Bayes error is the error rate achieved by the optimal classi�er for a given pattern
recognition problem� Therefore the Bayes error represents the best achievable performance
for any classi�er� The Bayes error is rarely known in practice because designing a classi�er
which achieves the Bayes error requires exact knowledge of the probability distributions from
which the data are drawn� This makes it dicult for the practitioner to determine how close
a classi�er is to optimal� and consequently to decide how much e�ort should be devoted to
classi�er improvement� In addition� when classi�er performance fails to achieve pre�speci�ed
requirements it is dicult to determine whether this is due to lack of optimality in the classi�er
or lack of information in the data� Perhaps surprisingly� the Bayes error can be estimated from
a given data set without designing a classi�er that achieves this error� The estimation technique
consists of choosing a family of classi�ers for which the di�erence between their classi�cation
error and the Bayes error can be analytically approximated� Then� by �tting the actual �data
dependent� classi�cation error for a series of classi�ers from this family to this bias expression
it is possible to compute an estimate of the Bayes error� This approach was originally proposed
by Fukunaga �Fuk���� and has been used to produce Bayes error estimates for some simple real
world problems� We propose to develop robust and e�cient algorithms for estimating the Bayes

error from empirical data�

� Technical Background

Consider a two�class pattern recognition problem where the goal is to correctly assign patterns
�e�g�� �measurements of a system�� to one of the two classes� In most practical problems it is
impossible to do this without making errors� This can be illustrated with the measurements
height and weight and the classes male and female� While it is generally true that men are
heavier and taller than women� they cannot be perfectly classi�ed on this basis alone� For
example� consider only the measurement height� Clearly there is an overlap in the distribution
of heights for men and women� A similar situation exists with respect to weight� Combining
height and weight may help reduce overlap but will not eliminate it� The extent of overlap limits
the degree to which men and women can be separated on the basis of these measurements� The
Bayes classi�cation error is a measure of ambiguity due to the overlap between measurement
distributions� Since this ambiguity is irreducible for a given problem� the Bayes error is the
smallest classi�cation error achievable by any classi�er�

More formally� following �DH���� let the number of measurements made at any one time
be d� and let x � �x� x� � � � xd�� be a set of measurements belonging to some class� Each
measurement vector x is called a sample� and a collection of samples is called a sample set� For
simplicity consider a two�class problem where �� and �� are the class labels� Let P��i j x�
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denote the probability that x belongs to class �i� Assume we have a classi�er that assigns a
label for each x� An error is made or the sample x is misclassi�ed� if x is assigned to the class
�i when it is actually a member of some other class �j� The average classi�cation error � is

� �

Z
x���

P��� j x� dx�

Z
x���

P��� j x� dx� ���

In this equation the �rst term is the probability of assigning x the label �� when its true label
is �� and the second term is the probability of assigning x the label �� when its true label is ���
It is easy to show that the classi�cation rule that minimizes � is to assign x to the class �i with
the highest probability P��i j x�� The corresponding value of � is called the Bayes error and
denoted ��� These ideas are illustrated in Figure � for a ��class problem with � measurement�
The two regions x� �� and x� �� show the range of sample values x which are assigned to

x

P��i j x�

x� ��x� ��
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Figure �� The decision regions of a Bayes classi�er for a problem in which m � � and d � ��

class �� and �� respectively� In the region x � ��� the value of P��� j x� is always greater
than P��� j x� and conversely in x � ��� The area of the shaded region is the classi�cation
error ��� The dotted vertical line in the �gure is at the point where P��� j x� � P��� j x� and
represents the dividing line between the two regions�

In practice the the posterior probabilities P��i j x� are not known and so the goal is to
determine a decision rule that best approximates the optimal one� This can be accomplished
with a discriminant function h�x� and a classi�cation threshold � that assigns x to class ��

when h�x� � � and to class �� when h�x� � � � Using Bayes rule to rewrite the conditional
probabilities P��i j x�� the discriminant function and classi�cation threshold for a ��class
problem take the form

h�x� �
�p�x j ���

�p�x j ���

��
�
��

�P����

�P����
� �� ���

where �p��� and �P��� are estimates of the conditional densities and prior probabilities respectively�
For estimating the Bayes the error the family of k�nearest neighbor �kNN� classi�ers was

chosen because its classi�cation error approaches the Bayes error asymptotically and its bias
from the Bayes error can be analytically approximated� Given a �nite set of labeled samples�
S � f�xi� �i�g� a volumetric k�nearest neighbor classi�er is obtained by substituting a �th order
discrete local approximation for the conditional densities �p�x j �i�� More speci�cally the density
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estimate at x is the fraction of samples in a local region surrounding x divided by the volume
of the local region� where the size of the local region is determined by the distance to the kth
nearest neighbor from class �i� in other words

�p
�
x j �i

�
�

k � �
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�i
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�
x

� � ���

In this equation ni is the number of samples from class �i and v�ik

�
x

�
is the volume of the

local region surrounding x� The use of k � � rather than k in the numerator ensures that
the density estimate is asymptotically unbiased� The nature of this density estimate around a
single point x�j� is shown in Figure �� Intuitively� at every sample the kNN density estimate
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Figure �� The kNN density estimate �p
�
x�j� j �i

�
for the sample point x�j�� The shaded region

is the volume of the hyper	ellipsoid bounded by the kth closest point from class �i�
The height of this window is the density estimate�

places a window of constant height which has a hyper�ellipsoidal footprint� The height of the
window is computed from Equation ���� The size of the hyper�ellipsoid varies with the sample
point being considered� and is determined by the distance from the sample point to the kth
closest point from class �i� where this point is is denoted by �x�i

k � The form of the distance
measure determines the speci�c shape of the hyper�ellipsoid� Substituting Equation ��� in to
Equation ��� for the ��class problem and simplifying yields the kNN discriminant function
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In this equation Di
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i �x � �x�i
k � is the Mahalanobis distance between

the sample point x and its kth nearest neighbor from class �i� and ��i is the estimate of the
covariance matrix associated with the samples from class �i� In a kNN classi�er the sample
point x is assigned to class �� if the scaled distance to the kth point from class �� is less than
the scaled distance to the kth point from class ��� otherwise it is assigned to class ��� The
kNN discriminant function hkNN �x� is piecewise linear if ��� � ��� and piecewise quadratic
otherwise� hence hkNN�x� is continuous� For a problem with two measurements per sample�
the decision boundary h�NN�x� � ��NN for a �NN classi�er is shown in Figure ��

The statistical properties of kNN classi�ers are well known and are discussed in �DGL�	�
and �Fuk���� The kNN classi�er is consistent in that its classi�cation error approaches the
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Figure �� The decision boundary for a �NN classi�er for a problem with two measurements per
sample where ��� � ����

Bayes error asymptotically as both k � � and n � �� However� for �nite k and n� its
classi�cation error is biased away from the Bayes error� Fukunaga �Fuk��� has shown that
this bias can be reduced by replacing �kNN with a threshold �� that is chosen to minimize the
classi�cation error over the samples in S� An approximation for the bias of the kNN classi�er
that is accurate to second order is

�kNN � �� � c������ � c�
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where �� � ����kNN and n � n��n�� Note that �kNN � �� as k ��� n��� and �� � �kNN �
Also note that Funkunaga�s work shows� perhaps surprisingly� that for �nite k and n choosing
�� � �kNN does not lead to the best estimates of ��� The bias approximation in Equation ���
is a function of only two independent variables� the neighborhood size k� and the threshold �� �
In addition it is linear in seven undetermined coecients� c�� c�� c�� c�� c�� c� and the Bayes
error ��� This suggests the following technique for estimating the Bayes error� Compute �kNN
for k � �� �� ���k and then �t a curve to the resulting set of f�k� �kNN �k��g pairs to obtain the
coecients of Equation ���� This curve �t is illustrated in Figure �� The zero order coecient

�kNN

k

��

Figure �� Curve �tting the bias of the volumetric kNN classi�er�

from this �t is an estimate of the Bayes error� Notice that this remarkably simple technique

can be used to obtain accurate estimates of the Bayes error without building a classi�er which

achieves this error�
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We summarize by placing this idea in a historical context� Most of the work on Bayes
error estimation has focused on estimating bounds for the Bayes error from data� It is shown
in �DGL�	� that even theoretically these bounds are not tight� Furthermore� it is shown in
�FH��b� that in practice the estimates of these bounds often have large biases� Fukunaga has
worked extensively on methods for tightening these bounds by reducing this bias �FH��� FF���
FF��� FH��b� FH��a� FH��� Fuk���� In his later work Fukunaga �FH��a� Fuk��� introduced
the idea of estimating the Bayes error directly by curve �tting a bias approximation �i�e��
Equation ����� but his techniques are limited to two�class problems where the class distributions
p�x j �i� are unimodal� In addition� Fukunaga�s work overlooks some important theoretical and
practical issues that must be overcome to make this technique practically viable� We propose

to address these open issues and extend this technique to multi�class problems with multimodal

distributions�

� Proposed Work and Signi�cance to LANL

We propose to develop robust algorithms for estimating the Bayes error from large data sets�
This requires  eshing out Fukunaga�s proposed methodology in the following ways�

�� Parameter Estimation! Fukunaga develops several criteria for choosing �� which we
have explored in our previous work �HH���� We will theoretically assess the advantages
and disadvantages of these criteria� as well as investigating other possible criteria� We
will then explore computationally ecient implementations of the various criteria� This
will require the development of new algorithms that signi�cantly extend Fukunaga�s work�
This issue must be addressed because good estimates of �� are essential to obtaining good
estimates of the Bayes error�

�� Nearest Neighbor Computation! The computational complexity of this approach
is dominated by the the nearest neighbor computation� A brute force implementation
is computationally expensive and will prohibit this method from scaling to large data
sets� We will investigate data structures �e�g�� k�d trees� and algorithms for eciently
computing the nearest neighbors� In addition� we will explore recent methods� such as
those in �IM���� for approximating nearest neighbor computations that promise to scale
to extremely large problem sizes� Resolving these computational issues is critical in order
to scale the Bayes error estimation procedure to data sets with a large number of samples
and"or a large number of measurements per sample�

We also propose to extend Fukunaga�s method in the following ways�

�� Multiple Modes per Class! Fukunaga�s technique assumes that the conditional proba�
bility densities p�x j �i� are unimodal� We will to extend this formalism to the case where
p�x j �i� are multimodal� This will require the use of a mixture model for p�x j �i� and
the incorporation of a maximum likelihood estimator for the parameters of this model�
such as the EM algorithm and its recent extensions discussed by �McL����

�� Multiple Classes! Fukunaga�s procedure is designed for two�class problems� We will
extend the method to cases where there are more than two classes� This will require
the derivation of a new bias expression� since Equation ��� is valid only for the ��class
problem� Beyond this we believe that many of the lessons learned from implementing
multiple modes per class can be leveraged to address problems with multiple classes�
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Bayes error estimation can be applied to classi�cation problems at LANL in areas such as
computer security and weapons non�proliferation� Examples of computer security problems
include document classi�cation and network intrusion detection� Examples of problems in
weapons non�proliferation include the detection of weapons tests and weapons factories� All of
these problems are classi�cation problems in the sense that the goal is to distinguish between
a class of things that are de�ned to be �normal� and a class of things that are �abnormal��
An important question in all of these problems is how well the classes can be distinguished
using the currently measured quantities� An estimate of the Bayes error answers precisely this
question� Another important issue in these problems is the determination of the optimal feature
set� Features can be thought of as transformations of the data that �lter out noise and retain
the information essential for discrimination� In order to select features one must have some
criteria that allows di�erent features to be compared� The Bayes error estimate is one good
candidate for such a criteria� To compare two features� transform the original sample data
using each feature� Estimate the Bayes error for each of these two transformed sample sets�
The better feature under this criteria is the one with the lower Bayes error estimate�
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